
Elias B. Khalil — 20/09/21

Integer Programming
MIE1666: Machine Learning for Mathematical Optimization

Machine Learning for

Combinatorial Optimization

——COMPETITION 2021——

Did I forget to hit
record? Please

remind me!

Readings and figures from Chapters 1, 2, 7, 13 of Integer Programming by Wolsey

2

Services
Memory

CPU

…

Machines …
?

S

M

2

Services
Memory

CPU

…

Machines …
?

S

M

ym = 1 if machine is usedm
xs,m = 1 if service runs ons m

2

x ∈ {0,1}S×M, y ∈ {0,1}M

Services
Memory

CPU

…

Machines …
?

S

M

ym = 1 if machine is usedm
xs,m = 1 if service runs ons m

2

minimize
M

∑
m=1

ym

x ∈ {0,1}S×M, y ∈ {0,1}M

Services
Memory

CPU

…

Machines …
?

S

M

ym = 1 if machine is usedm
xs,m = 1 if service runs ons m

2

minimize
M

∑
m=1

ym

x ∈ {0,1}S×M, y ∈ {0,1}M

Services
Memory

CPU

…

Machines …
?

S

M

Constraints:

ym = 1 if machine is usedm
xs,m = 1 if service runs ons m

2

minimize
M

∑
m=1

ym

M

∑
m=1

xs,m = 1 ∀s

x ∈ {0,1}S×M, y ∈ {0,1}M

Each service on one machine only

Services
Memory

CPU

…

Machines …
?

S

M

Constraints:

ym = 1 if machine is usedm
xs,m = 1 if service runs ons m

2

minimize
M

∑
m=1

ym

M

∑
m=1

xs,m = 1 ∀s

x ∈ {0,1}S×M, y ∈ {0,1}M

ym ≥ xs,m ∀s, m

Each service on one machine only

Machine is “ON” if a job is assigned to it

Services
Memory

CPU

…

Machines …
?

S

M

Constraints:

ym = 1 if machine is usedm
xs,m = 1 if service runs ons m

2

minimize
M

∑
m=1

ym

M

∑
m=1

xs,m = 1 ∀s

x ∈ {0,1}S×M, y ∈ {0,1}M

S

∑
s=1

mem(s) ⋅ xs,m ≤ cap-mem(m) ∀m

ym ≥ xs,m ∀s, m

Each service on one machine only

Machine is “ON” if a job is assigned to it

Memory capacity

Services
Memory

CPU

…

Machines …
?

S

M

Constraints:

ym = 1 if machine is usedm
xs,m = 1 if service runs ons m

2

minimize
M

∑
m=1

ym

M

∑
m=1

xs,m = 1 ∀s

x ∈ {0,1}S×M, y ∈ {0,1}M

S

∑
s=1

mem(s) ⋅ xs,m ≤ cap-mem(m) ∀m

S

∑
s=1

cpu(s) ⋅ xs,m ≤ cap-cpu(m) ∀mym ≥ xs,m ∀s, m

Each service on one machine only

Machine is “ON” if a job is assigned to it

Memory capacity

Processor capacity

Services
Memory

CPU

…

Machines …
?

S

M

Constraints:

ym = 1 if machine is usedm
xs,m = 1 if service runs ons m

Linear Program

3

max c|x
Ax  b

x � 0

A 2 Rm⇥n, b 2 Rm⇥1, c 2 Rn⇥1

x 2 Rn⇥1

Data (known)

Variables (unknown)

(Pure) Integer (Linear) Program

4

max c|x
Ax  b

x � 0 and integer

A 2 Rm⇥n, b 2 Rm⇥1, c 2 Rn⇥1

x 2 Rn⇥1

Mixed Integer (Linear) Program

5

max c|x+ h|y
Ax+Gy  b

x � 0 and integer, y � 0

A 2 Rm⇥n, G 2 Rm⇥p, b 2 Rm⇥1, c 2 Rn⇥1, h 2 Rp⇥1

x 2 Rn⇥1, y 2 Rp⇥1

0-1 (Binary) Program

6

max c|x
Ax  b

x 2 {0, 1}n

A 2 Rm⇥n, b 2 Rm⇥1, c 2 Rn⇥1

x 2 Rn⇥1

Combinatorial Optimization Problem

7

min
S✓N

(
P

j2S cj : S 2 F
)

N = {1, . . . , n} is a finite set,
cj 2 R is a weight for each j 2 N ,
F is a set of feasible subsets of N .

8

x1

x2

From Integer Programming by Wolsey

!

! !

!

4 1 Formulations

Combinatorial Optimization Problem

(COP) min
S⊆N

{∑
j∈S

cj ∶ S ∈ 
}

.

In Section 1.3, we will see various examples of integer programs (IPs) and com-
binatorial optimization problems (COPs), and also see that often a COP can be
formulated as an IP or a 0–1 IP.

Given that integer programs look very much like linear programs, it is not
surprising that linear programming theory and practice is fundamental in under-
standing and solving integer programs. However, the !rst idea that springs to
mind, namely “rounding,” is often insu"cient, as the following example shows:

Example 1.1 Consider the integer program:
max 1.00x1 +0.64x2

50x1 +31x2 ≤ 250
3x1 −2x2 ≥ −4
x1, x2 ≥ 0 and integer.

As we see from Figure 1.1, the linear programming solution (376∕193, 950∕193) is
a long way from the optimal integer solution (5, 0). ◽

For 0–1 IPs, the situation is often even worse. The linear programming solution
may well be (0.5,… , 0.5), giving no information whatsoever. What is more, it is
typically very di"cult just to answer the question whether there exists a feasible
0–1 solution.

(376
193 , 950

193)

0
1 2 3 4 5

1

2

3

4

5

(5, 0)

Figure 1.1 LP and IP solutions.

!

! !

!

4 1 Formulations

Combinatorial Optimization Problem

(COP) min
S⊆N

{∑
j∈S

cj ∶ S ∈ 
}

.

In Section 1.3, we will see various examples of integer programs (IPs) and com-
binatorial optimization problems (COPs), and also see that often a COP can be
formulated as an IP or a 0–1 IP.

Given that integer programs look very much like linear programs, it is not
surprising that linear programming theory and practice is fundamental in under-
standing and solving integer programs. However, the !rst idea that springs to
mind, namely “rounding,” is often insu"cient, as the following example shows:

Example 1.1 Consider the integer program:
max 1.00x1 +0.64x2

50x1 +31x2 ≤ 250
3x1 −2x2 ≥ −4
x1, x2 ≥ 0 and integer.

As we see from Figure 1.1, the linear programming solution (376∕193, 950∕193) is
a long way from the optimal integer solution (5, 0). ◽

For 0–1 IPs, the situation is often even worse. The linear programming solution
may well be (0.5,… , 0.5), giving no information whatsoever. What is more, it is
typically very di"cult just to answer the question whether there exists a feasible
0–1 solution.

(376
193 , 950

193)

0
1 2 3 4 5

1

2

3

4

5

(5, 0)

Figure 1.1 LP and IP solutions.

Formulating optimization problems
1. Decision variables: what do you control?

2. Constraints: what conditions do these variables need to satisfy?

3. Objective function: what are you maximizing in the variables?

4. Check: do 1-3 accurately represent your problem? If not, repeat.

9

Assignment Problem

10

!

! !

!

1.3 Formulating IPs and BIPs 5

1.3 Formulating IPs and BIPs

As in linear programming, translating a problem description into a formulation
should be done systematically. A clear distinction should be made between the
data of the problem instance and the variables (or unknowns) used in the model.

(i) De!ne what appear to be the necessary variables.
(ii) Use these variables to de!ne a set of constraints so that the feasible points

correspond to the feasible solutions of the problem.
(iii) Use these variables to de!ne the objective function.

If di"culties arise, de!ne an additional or alternative set of variables and iterate.
De!ning variables and constraints may not always be as easy as in linear

programming. Especially for COPs, we are often interested in choosing a subset
S ⊆ N. For this, we typically make use of the incidence vector of S, which is the
n-dimensional 0–1 vector xS such that xS

j = 1 if j ∈ S, and xS
j = 0 otherwise.

Below we formulate four well-known integer programming problems.

The Assignment Problem

There are n people available to carry out n jobs. Each person is assigned to carry out
exactly one job. Some individuals are better suited to particular jobs than others,
so there is an estimated cost cij if person i is assigned to job j. The problem is to
!nd a minimum cost assignment.
De!nition of the variables.

xij = 1 if person i does job j, and xij = 0 otherwise.
De!nition of the constraints.

Each person i does one job:
n∑

j=1
xij = 1 for i = 1,… ,n.

Each job j is done by one person:
n∑

i=1
xij = 1 for j = 1,… ,n.

The variables are 0–1:
xij ∈ {0, 1} for i = 1,… ,n, j = 1,… ,n.

De!nition of the objective function.
The cost of the assignment is minimized:

min
n∑

i=1

n∑
j=1

cijxij.

!

! !

!

1.3 Formulating IPs and BIPs 5

1.3 Formulating IPs and BIPs

As in linear programming, translating a problem description into a formulation
should be done systematically. A clear distinction should be made between the
data of the problem instance and the variables (or unknowns) used in the model.

(i) De!ne what appear to be the necessary variables.
(ii) Use these variables to de!ne a set of constraints so that the feasible points

correspond to the feasible solutions of the problem.
(iii) Use these variables to de!ne the objective function.

If di"culties arise, de!ne an additional or alternative set of variables and iterate.
De!ning variables and constraints may not always be as easy as in linear

programming. Especially for COPs, we are often interested in choosing a subset
S ⊆ N. For this, we typically make use of the incidence vector of S, which is the
n-dimensional 0–1 vector xS such that xS

j = 1 if j ∈ S, and xS
j = 0 otherwise.

Below we formulate four well-known integer programming problems.

The Assignment Problem

There are n people available to carry out n jobs. Each person is assigned to carry out
exactly one job. Some individuals are better suited to particular jobs than others,
so there is an estimated cost cij if person i is assigned to job j. The problem is to
!nd a minimum cost assignment.
De!nition of the variables.

xij = 1 if person i does job j, and xij = 0 otherwise.
De!nition of the constraints.

Each person i does one job:
n∑

j=1
xij = 1 for i = 1,… ,n.

Each job j is done by one person:
n∑

i=1
xij = 1 for j = 1,… ,n.

The variables are 0–1:
xij ∈ {0, 1} for i = 1,… ,n, j = 1,… ,n.

De!nition of the objective function.
The cost of the assignment is minimized:

min
n∑

i=1

n∑
j=1

cijxij.

!

! !

!

1.3 Formulating IPs and BIPs 5

1.3 Formulating IPs and BIPs

As in linear programming, translating a problem description into a formulation
should be done systematically. A clear distinction should be made between the
data of the problem instance and the variables (or unknowns) used in the model.

(i) De!ne what appear to be the necessary variables.
(ii) Use these variables to de!ne a set of constraints so that the feasible points

correspond to the feasible solutions of the problem.
(iii) Use these variables to de!ne the objective function.

If di"culties arise, de!ne an additional or alternative set of variables and iterate.
De!ning variables and constraints may not always be as easy as in linear

programming. Especially for COPs, we are often interested in choosing a subset
S ⊆ N. For this, we typically make use of the incidence vector of S, which is the
n-dimensional 0–1 vector xS such that xS

j = 1 if j ∈ S, and xS
j = 0 otherwise.

Below we formulate four well-known integer programming problems.

The Assignment Problem

There are n people available to carry out n jobs. Each person is assigned to carry out
exactly one job. Some individuals are better suited to particular jobs than others,
so there is an estimated cost cij if person i is assigned to job j. The problem is to
!nd a minimum cost assignment.
De!nition of the variables.

xij = 1 if person i does job j, and xij = 0 otherwise.
De!nition of the constraints.

Each person i does one job:
n∑

j=1
xij = 1 for i = 1,… ,n.

Each job j is done by one person:
n∑

i=1
xij = 1 for j = 1,… ,n.

The variables are 0–1:
xij ∈ {0, 1} for i = 1,… ,n, j = 1,… ,n.

De!nition of the objective function.
The cost of the assignment is minimized:

min
n∑

i=1

n∑
j=1

cijxij.

0-1 Knapsack Problem

11

CC BY-SA 2.5, https://
commons.wikimedia.org/w/
index.php?curid=985491

!

! !

!

6 1 Formulations

The 0–1 Knapsack Problem

There is a budget b available for investment in projects during the coming year
and n projects are under consideration, where aj is the outlay for project j and cj is
its expected return. The goal is to choose a set of projects so that the budget is not
exceeded and the expected return is maximized.

De!nition of the variables.
xj = 1 if project j is selected, and xj = 0 otherwise.

De!nition of the constraints.
The budget cannot be exceeded:

n∑
j=1

ajxj ≤ b.

The variables are 0–1:

xj ∈ {0, 1} for j = 1,… ,n.

De!nition of the objective function.
The expected return is maximized:

max
n∑

j=1
cjxj.

The Set Covering Problem

Given a certain number of regions, the problem is to decide where to install a set of
emergency service centers. For each possible center, the cost of installing a service
center and which regions it can service are known. For instance, if the centers are
!re stations, a station can service those regions for which a !re engine is guaran-
teed to arrive on the scene of a !re within eight minutes. The goal is to choose a
minimum cost set of service centers so that each region is covered.

First, we can formulate it as a more abstract COP. Let M = {1,… ,m} be the set
of regions, and N = {1,… ,n} the set of potential centers. Let Sj ⊆ M be the regions
that can be serviced by a center at j ∈ N and cj its installation cost. We obtain the
problem:

min
T⊆N

{∑
j∈T

cj ∶ ∪j∈TSj = M
}

.

Now, we formulate it as a 0–1 IP. To facilitate the description, we !rst construct
a 0–1 incidence matrix A such that aij = 1 if i ∈ Sj and aij = 0, otherwise. Note that
this is nothing but processing of the data.

!

! !

!

6 1 Formulations

The 0–1 Knapsack Problem

There is a budget b available for investment in projects during the coming year
and n projects are under consideration, where aj is the outlay for project j and cj is
its expected return. The goal is to choose a set of projects so that the budget is not
exceeded and the expected return is maximized.

De!nition of the variables.
xj = 1 if project j is selected, and xj = 0 otherwise.

De!nition of the constraints.
The budget cannot be exceeded:

n∑
j=1

ajxj ≤ b.

The variables are 0–1:

xj ∈ {0, 1} for j = 1,… ,n.

De!nition of the objective function.
The expected return is maximized:

max
n∑

j=1
cjxj.

The Set Covering Problem

Given a certain number of regions, the problem is to decide where to install a set of
emergency service centers. For each possible center, the cost of installing a service
center and which regions it can service are known. For instance, if the centers are
!re stations, a station can service those regions for which a !re engine is guaran-
teed to arrive on the scene of a !re within eight minutes. The goal is to choose a
minimum cost set of service centers so that each region is covered.

First, we can formulate it as a more abstract COP. Let M = {1,… ,m} be the set
of regions, and N = {1,… ,n} the set of potential centers. Let Sj ⊆ M be the regions
that can be serviced by a center at j ∈ N and cj its installation cost. We obtain the
problem:

min
T⊆N

{∑
j∈T

cj ∶ ∪j∈TSj = M
}

.

Now, we formulate it as a 0–1 IP. To facilitate the description, we !rst construct
a 0–1 incidence matrix A such that aij = 1 if i ∈ Sj and aij = 0, otherwise. Note that
this is nothing but processing of the data.

!

! !

!

6 1 Formulations

The 0–1 Knapsack Problem

There is a budget b available for investment in projects during the coming year
and n projects are under consideration, where aj is the outlay for project j and cj is
its expected return. The goal is to choose a set of projects so that the budget is not
exceeded and the expected return is maximized.

De!nition of the variables.
xj = 1 if project j is selected, and xj = 0 otherwise.

De!nition of the constraints.
The budget cannot be exceeded:

n∑
j=1

ajxj ≤ b.

The variables are 0–1:

xj ∈ {0, 1} for j = 1,… ,n.

De!nition of the objective function.
The expected return is maximized:

max
n∑

j=1
cjxj.

The Set Covering Problem

Given a certain number of regions, the problem is to decide where to install a set of
emergency service centers. For each possible center, the cost of installing a service
center and which regions it can service are known. For instance, if the centers are
!re stations, a station can service those regions for which a !re engine is guaran-
teed to arrive on the scene of a !re within eight minutes. The goal is to choose a
minimum cost set of service centers so that each region is covered.

First, we can formulate it as a more abstract COP. Let M = {1,… ,m} be the set
of regions, and N = {1,… ,n} the set of potential centers. Let Sj ⊆ M be the regions
that can be serviced by a center at j ∈ N and cj its installation cost. We obtain the
problem:

min
T⊆N

{∑
j∈T

cj ∶ ∪j∈TSj = M
}

.

Now, we formulate it as a 0–1 IP. To facilitate the description, we !rst construct
a 0–1 incidence matrix A such that aij = 1 if i ∈ Sj and aij = 0, otherwise. Note that
this is nothing but processing of the data.

https://commons.wikimedia.org/w/index.php?curid=985491
https://commons.wikimedia.org/w/index.php?curid=985491
https://commons.wikimedia.org/w/index.php?curid=985491

Set Covering Problem

12

min
T✓N

(
P

j2T cj : [j2TSj = M

)

M = {1, . . . ,M} is the set of regions,
N = {1, . . . , n} is the set of potential centers,
cj 2 R+ is the per-region installation cost.

!

! !

!

6 1 Formulations

The 0–1 Knapsack Problem

There is a budget b available for investment in projects during the coming year
and n projects are under consideration, where aj is the outlay for project j and cj is
its expected return. The goal is to choose a set of projects so that the budget is not
exceeded and the expected return is maximized.

De!nition of the variables.
xj = 1 if project j is selected, and xj = 0 otherwise.

De!nition of the constraints.
The budget cannot be exceeded:

n∑
j=1

ajxj ≤ b.

The variables are 0–1:

xj ∈ {0, 1} for j = 1,… ,n.

De!nition of the objective function.
The expected return is maximized:

max
n∑

j=1
cjxj.

The Set Covering Problem

Given a certain number of regions, the problem is to decide where to install a set of
emergency service centers. For each possible center, the cost of installing a service
center and which regions it can service are known. For instance, if the centers are
!re stations, a station can service those regions for which a !re engine is guaran-
teed to arrive on the scene of a !re within eight minutes. The goal is to choose a
minimum cost set of service centers so that each region is covered.

First, we can formulate it as a more abstract COP. Let M = {1,… ,m} be the set
of regions, and N = {1,… ,n} the set of potential centers. Let Sj ⊆ M be the regions
that can be serviced by a center at j ∈ N and cj its installation cost. We obtain the
problem:

min
T⊆N

{∑
j∈T

cj ∶ ∪j∈TSj = M
}

.

Now, we formulate it as a 0–1 IP. To facilitate the description, we !rst construct
a 0–1 incidence matrix A such that aij = 1 if i ∈ Sj and aij = 0, otherwise. Note that
this is nothing but processing of the data.

Set Covering Problem

13

!

! !

!

6 1 Formulations

The 0–1 Knapsack Problem

There is a budget b available for investment in projects during the coming year
and n projects are under consideration, where aj is the outlay for project j and cj is
its expected return. The goal is to choose a set of projects so that the budget is not
exceeded and the expected return is maximized.

De!nition of the variables.
xj = 1 if project j is selected, and xj = 0 otherwise.

De!nition of the constraints.
The budget cannot be exceeded:

n∑
j=1

ajxj ≤ b.

The variables are 0–1:

xj ∈ {0, 1} for j = 1,… ,n.

De!nition of the objective function.
The expected return is maximized:

max
n∑

j=1
cjxj.

The Set Covering Problem

Given a certain number of regions, the problem is to decide where to install a set of
emergency service centers. For each possible center, the cost of installing a service
center and which regions it can service are known. For instance, if the centers are
!re stations, a station can service those regions for which a !re engine is guaran-
teed to arrive on the scene of a !re within eight minutes. The goal is to choose a
minimum cost set of service centers so that each region is covered.

First, we can formulate it as a more abstract COP. Let M = {1,… ,m} be the set
of regions, and N = {1,… ,n} the set of potential centers. Let Sj ⊆ M be the regions
that can be serviced by a center at j ∈ N and cj its installation cost. We obtain the
problem:

min
T⊆N

{∑
j∈T

cj ∶ ∪j∈TSj = M
}

.

Now, we formulate it as a 0–1 IP. To facilitate the description, we !rst construct
a 0–1 incidence matrix A such that aij = 1 if i ∈ Sj and aij = 0, otherwise. Note that
this is nothing but processing of the data.

!

! !

!

1.3 Formulating IPs and BIPs 7

De!nition of the variables.
xj = 1 if center j is selected, and xj = 0 otherwise.

De!nition of the constraints.
At least one center must service region i:

n∑
j=1

aijxj ≥ 1 for i = 1,… ,m.

The variables are 0–1:

xj ∈ {0, 1} for j = 1,… ,n.

De!nition of the objective function.
The total cost is minimized:

min
n∑

j=1
cjxj.

The Traveling Salesman Problem (TSP)

This is perhaps the most notorious problem in Operations Research because it is
so easy to explain, and so tempting to try and solve. A salesman must visit each of
n cities exactly once and then return to his starting point. The time taken to travel
from city i to city j is cij. Find the order in which he should make his tour so as to
!nish as quickly as possible.

This problem arises in a multitude of forms: a truck driver has a list of clients
he must visit on a given day, or a machine must place modules on printed circuit
boards, or a stacker crane must pick up and depose crates. Now, we formulate it
as a 0–1 IP.

De!nition of the variables.
xij = 1 if the salesman goes directly from town i to town j, and xij = 0, otherwise.
(xii is not de!ned for i = 1,… ,n.)

De!nition of the constraints.
He leaves town i exactly once:

∑
j∶j≠i

xij = 1 for i = 1,… ,n.

He arrives at town j exactly once:
∑
i∶i≠j

xij = 1 for j = 1,… ,n.

So far these are precisely the constraints of the assignment problem. A solution
to the assignment problem might give a solution of the form shown in Figure 1.2
(i.e. a set of disconnected subtours). To eliminate these solutions, we need more

!

! !

!

1.3 Formulating IPs and BIPs 7

De!nition of the variables.
xj = 1 if center j is selected, and xj = 0 otherwise.

De!nition of the constraints.
At least one center must service region i:

n∑
j=1

aijxj ≥ 1 for i = 1,… ,m.

The variables are 0–1:

xj ∈ {0, 1} for j = 1,… ,n.

De!nition of the objective function.
The total cost is minimized:

min
n∑

j=1
cjxj.

The Traveling Salesman Problem (TSP)

This is perhaps the most notorious problem in Operations Research because it is
so easy to explain, and so tempting to try and solve. A salesman must visit each of
n cities exactly once and then return to his starting point. The time taken to travel
from city i to city j is cij. Find the order in which he should make his tour so as to
!nish as quickly as possible.

This problem arises in a multitude of forms: a truck driver has a list of clients
he must visit on a given day, or a machine must place modules on printed circuit
boards, or a stacker crane must pick up and depose crates. Now, we formulate it
as a 0–1 IP.

De!nition of the variables.
xij = 1 if the salesman goes directly from town i to town j, and xij = 0, otherwise.
(xii is not de!ned for i = 1,… ,n.)

De!nition of the constraints.
He leaves town i exactly once:

∑
j∶j≠i

xij = 1 for i = 1,… ,n.

He arrives at town j exactly once:
∑
i∶i≠j

xij = 1 for j = 1,… ,n.

So far these are precisely the constraints of the assignment problem. A solution
to the assignment problem might give a solution of the form shown in Figure 1.2
(i.e. a set of disconnected subtours). To eliminate these solutions, we need more

Equivalent formulations of the same set

14

X = {(1,1), (2,1), (3,1), (1,2), (2,2), (3,2), (2,3)}

!

! !

!

1.7 Good and Ideal Formulations 15

Figure 1.6 The ideal
formulation.

P1

P2

1 2 3 4
0

1

2

3

P3

1.7 Good and Ideal Formulations

In Figure 1.5, we show two di!erent formulations of the same problem. We have
also seen two possible formulations for the uncapacitated facility location prob-
lem. Geometrically, we can see that there must be an in"nite number of formula-
tions, so how can we choose between them?

The geometry again helps us to "nd an answer. Look at Figure 1.6 in which we
have repeated the two formulations shown in Figure 1.5 and added a third one
P3. Formulation P3 is ideal, because now if we solve a linear program over P3, the
optimal solution is at a vertex (extreme point). In this ideal case, each vertex is
integer and so the IP is solved.

We can now formalize this idea.

De!nition 1.3 Given a set X ⊆ ℝn, the convex hull of X , denoted conv(X), is
de"ned as follows: conv(X) = {x ∶ x = ∑t

i=1 "ixi,
∑t

i=1 "i = 1, "i ≥ 0 for i = 1,… , t
over all "nite subsets {x1,… , xt} of X}.

Proposition 1.1 If X = {x ∈ ℤn ∶ Ax ≤ b}, conv(X) is a polyhedron.

De!nition 1.4 Given a polyhedron P, x is an extreme point of P if x1, x2 ∈ P with
x = "x1 + (1 − ")x2, 0 < " < 1 implies that x = x1 = x2. Note that extreme points
correspond to the geometric idea of vertices.

Proposition 1.2 When a linear program: max{cx ∶ x ∈ PX} where P is a polyhe-
dron has !nite optimal value, there exists an extreme point of P that is optimal.

0-1 (Binary) Program

15

max c|x
Ax  b

x 2 {0, 1}n

A 2 Rm⇥n, b 2 Rm⇥1, c 2 Rn⇥1

x 2 Rn⇥1

Z =

Feasible
solution
values

Relaxation
solution
values

Optimal value

Primal bound

Dual bound

16 From Integer Programming by Wolsey

Dual bound from Relaxations

!

! !

!

4 1 Formulations

Combinatorial Optimization Problem

(COP) min
S⊆N

{∑
j∈S

cj ∶ S ∈ 
}

.

In Section 1.3, we will see various examples of integer programs (IPs) and com-
binatorial optimization problems (COPs), and also see that often a COP can be
formulated as an IP or a 0–1 IP.

Given that integer programs look very much like linear programs, it is not
surprising that linear programming theory and practice is fundamental in under-
standing and solving integer programs. However, the !rst idea that springs to
mind, namely “rounding,” is often insu"cient, as the following example shows:

Example 1.1 Consider the integer program:
max 1.00x1 +0.64x2

50x1 +31x2 ≤ 250
3x1 −2x2 ≥ −4
x1, x2 ≥ 0 and integer.

As we see from Figure 1.1, the linear programming solution (376∕193, 950∕193) is
a long way from the optimal integer solution (5, 0). ◽

For 0–1 IPs, the situation is often even worse. The linear programming solution
may well be (0.5,… , 0.5), giving no information whatsoever. What is more, it is
typically very di"cult just to answer the question whether there exists a feasible
0–1 solution.

(376
193 , 950

193)

0
1 2 3 4 5

1

2

3

4

5

(5, 0)

Figure 1.1 LP and IP solutions.

!

! !

!

4 1 Formulations

Combinatorial Optimization Problem

(COP) min
S⊆N

{∑
j∈S

cj ∶ S ∈ 
}

.

In Section 1.3, we will see various examples of integer programs (IPs) and com-
binatorial optimization problems (COPs), and also see that often a COP can be
formulated as an IP or a 0–1 IP.

Given that integer programs look very much like linear programs, it is not
surprising that linear programming theory and practice is fundamental in under-
standing and solving integer programs. However, the !rst idea that springs to
mind, namely “rounding,” is often insu"cient, as the following example shows:

Example 1.1 Consider the integer program:
max 1.00x1 +0.64x2

50x1 +31x2 ≤ 250
3x1 −2x2 ≥ −4
x1, x2 ≥ 0 and integer.

As we see from Figure 1.1, the linear programming solution (376∕193, 950∕193) is
a long way from the optimal integer solution (5, 0). ◽

For 0–1 IPs, the situation is often even worse. The linear programming solution
may well be (0.5,… , 0.5), giving no information whatsoever. What is more, it is
typically very di"cult just to answer the question whether there exists a feasible
0–1 solution.

(376
193 , 950

193)

0
1 2 3 4 5

1

2

3

4

5

(5, 0)

Figure 1.1 LP and IP solutions.

x1

x2

Set Covering Problem

17

min
T✓N

(
P

j2T cj : [j2TSj = M

)

M = {1, . . . ,M} is the set of regions,
N = {1, . . . , n} is the set of potential centers,
cj 2 R+ is the per-region installation cost.

!

! !

!

6 1 Formulations

The 0–1 Knapsack Problem

There is a budget b available for investment in projects during the coming year
and n projects are under consideration, where aj is the outlay for project j and cj is
its expected return. The goal is to choose a set of projects so that the budget is not
exceeded and the expected return is maximized.

De!nition of the variables.
xj = 1 if project j is selected, and xj = 0 otherwise.

De!nition of the constraints.
The budget cannot be exceeded:

n∑
j=1

ajxj ≤ b.

The variables are 0–1:

xj ∈ {0, 1} for j = 1,… ,n.

De!nition of the objective function.
The expected return is maximized:

max
n∑

j=1
cjxj.

The Set Covering Problem

Given a certain number of regions, the problem is to decide where to install a set of
emergency service centers. For each possible center, the cost of installing a service
center and which regions it can service are known. For instance, if the centers are
!re stations, a station can service those regions for which a !re engine is guaran-
teed to arrive on the scene of a !re within eight minutes. The goal is to choose a
minimum cost set of service centers so that each region is covered.

First, we can formulate it as a more abstract COP. Let M = {1,… ,m} be the set
of regions, and N = {1,… ,n} the set of potential centers. Let Sj ⊆ M be the regions
that can be serviced by a center at j ∈ N and cj its installation cost. We obtain the
problem:

min
T⊆N

{∑
j∈T

cj ∶ ∪j∈TSj = M
}

.

Now, we formulate it as a 0–1 IP. To facilitate the description, we !rst construct
a 0–1 incidence matrix A such that aij = 1 if i ∈ Sj and aij = 0, otherwise. Note that
this is nothing but processing of the data.

Can you find a
feasible solution

easily?

0-1 Knapsack Problem

18

!

! !

!

6 1 Formulations

The 0–1 Knapsack Problem

There is a budget b available for investment in projects during the coming year
and n projects are under consideration, where aj is the outlay for project j and cj is
its expected return. The goal is to choose a set of projects so that the budget is not
exceeded and the expected return is maximized.

De!nition of the variables.
xj = 1 if project j is selected, and xj = 0 otherwise.

De!nition of the constraints.
The budget cannot be exceeded:

n∑
j=1

ajxj ≤ b.

The variables are 0–1:

xj ∈ {0, 1} for j = 1,… ,n.

De!nition of the objective function.
The expected return is maximized:

max
n∑

j=1
cjxj.

The Set Covering Problem

Given a certain number of regions, the problem is to decide where to install a set of
emergency service centers. For each possible center, the cost of installing a service
center and which regions it can service are known. For instance, if the centers are
!re stations, a station can service those regions for which a !re engine is guaran-
teed to arrive on the scene of a !re within eight minutes. The goal is to choose a
minimum cost set of service centers so that each region is covered.

First, we can formulate it as a more abstract COP. Let M = {1,… ,m} be the set
of regions, and N = {1,… ,n} the set of potential centers. Let Sj ⊆ M be the regions
that can be serviced by a center at j ∈ N and cj its installation cost. We obtain the
problem:

min
T⊆N

{∑
j∈T

cj ∶ ∪j∈TSj = M
}

.

Now, we formulate it as a 0–1 IP. To facilitate the description, we !rst construct
a 0–1 incidence matrix A such that aij = 1 if i ∈ Sj and aij = 0, otherwise. Note that
this is nothing but processing of the data.

!

! !

!

6 1 Formulations

The 0–1 Knapsack Problem

There is a budget b available for investment in projects during the coming year
and n projects are under consideration, where aj is the outlay for project j and cj is
its expected return. The goal is to choose a set of projects so that the budget is not
exceeded and the expected return is maximized.

De!nition of the variables.
xj = 1 if project j is selected, and xj = 0 otherwise.

De!nition of the constraints.
The budget cannot be exceeded:

n∑
j=1

ajxj ≤ b.

The variables are 0–1:

xj ∈ {0, 1} for j = 1,… ,n.

De!nition of the objective function.
The expected return is maximized:

max
n∑

j=1
cjxj.

The Set Covering Problem

Given a certain number of regions, the problem is to decide where to install a set of
emergency service centers. For each possible center, the cost of installing a service
center and which regions it can service are known. For instance, if the centers are
!re stations, a station can service those regions for which a !re engine is guaran-
teed to arrive on the scene of a !re within eight minutes. The goal is to choose a
minimum cost set of service centers so that each region is covered.

First, we can formulate it as a more abstract COP. Let M = {1,… ,m} be the set
of regions, and N = {1,… ,n} the set of potential centers. Let Sj ⊆ M be the regions
that can be serviced by a center at j ∈ N and cj its installation cost. We obtain the
problem:

min
T⊆N

{∑
j∈T

cj ∶ ∪j∈TSj = M
}

.

Now, we formulate it as a 0–1 IP. To facilitate the description, we !rst construct
a 0–1 incidence matrix A such that aij = 1 if i ∈ Sj and aij = 0, otherwise. Note that
this is nothing but processing of the data.

!

! !

!

6 1 Formulations

The 0–1 Knapsack Problem

There is a budget b available for investment in projects during the coming year
and n projects are under consideration, where aj is the outlay for project j and cj is
its expected return. The goal is to choose a set of projects so that the budget is not
exceeded and the expected return is maximized.

De!nition of the variables.
xj = 1 if project j is selected, and xj = 0 otherwise.

De!nition of the constraints.
The budget cannot be exceeded:

n∑
j=1

ajxj ≤ b.

The variables are 0–1:

xj ∈ {0, 1} for j = 1,… ,n.

De!nition of the objective function.
The expected return is maximized:

max
n∑

j=1
cjxj.

The Set Covering Problem

Given a certain number of regions, the problem is to decide where to install a set of
emergency service centers. For each possible center, the cost of installing a service
center and which regions it can service are known. For instance, if the centers are
!re stations, a station can service those regions for which a !re engine is guaran-
teed to arrive on the scene of a !re within eight minutes. The goal is to choose a
minimum cost set of service centers so that each region is covered.

First, we can formulate it as a more abstract COP. Let M = {1,… ,m} be the set
of regions, and N = {1,… ,n} the set of potential centers. Let Sj ⊆ M be the regions
that can be serviced by a center at j ∈ N and cj its installation cost. We obtain the
problem:

min
T⊆N

{∑
j∈T

cj ∶ ∪j∈TSj = M
}

.

Now, we formulate it as a 0–1 IP. To facilitate the description, we !rst construct
a 0–1 incidence matrix A such that aij = 1 if i ∈ Sj and aij = 0, otherwise. Note that
this is nothing but processing of the data.

Can you find a
feasible solution

greedily?

0-1 Knapsack Problem
Greedy algorithm

19

!

! !

!

252 13 Primal Heuristics

algorithms that work with families of solutions. These heuristics, though often
very e!ective, provide no (dual) performance bounds and thus no direct way of
assessing the quality of the solutions found.

We then discuss some of the ideas underlying the heuristics that have become
an important component within MIP solvers in the last 15 years. Finally we sug-
gest one or two ways in which the user can go a step further and make use of an
MIP solver to develop his/her own heuristics that take into account his/her spe-
cial knowledge of the problem. Often, as these approaches use an MIP solver, they
provide not just a primal feasible solution but also a dual bound that provides at
least some a posteriori performance guarantee.

13.2 Greedy and Local Search Revisited

Here we formalize the greedy and local search algorithms presented by example in
Section 2.7. First, we suppose that the problem can be written as a combinatorial
problem in the form:

min
S⊆N

{c(S) ∶ "(S) ≥ k}.

For example, the 0–1 knapsack problem

min
{ n∑

j=1
cjxj ∶

n∑
j=1

ajxj ≥ b, x ∈ {0, 1}n

}

with cj, aj ≥ 0 for j = 1,… ,n is of this form with c(S) = ∑
j∈S cj, "(S) =

∑
j∈S aj,

and k = b. The uncapacitated facility location problem also "ts this model if we
take c(S) = ∑

i∈M min
j∈S

cij +
∑

j∈S fj for S ≠ ∅, "(S) =∣ S ∣, and k = 1.
Below we assume that the empty set is infeasible, "(∅) = c(∅) = 0 and function

" is nondecreasing. We also assume that "(N) ≥ k as otherwise the problem is
infeasible.

A Greedy Heuristic

1. Set S0 = ∅ (start with the empty set). Set t = 1.
2. Set jt = arg min c(St−1∪{jt})−c(St−1)

"(St−1∪{jt})−"(St−1) (choose the element whose additional cost per
unit of resource is minimum).

3. If the previous solution St−1 is feasible, i.e. "(St−1) ≥ k, and c (St−1 ∪ {jt}) ≥
c (St−1), stop with SG = St−1.

4. Otherwise set St = St−1 ∪ {jt}.
5. If t = n, stop with SG = N.
6. Otherwise set t ← t + 1, and return to 2.

!

! !

!

252 13 Primal Heuristics

algorithms that work with families of solutions. These heuristics, though often
very e!ective, provide no (dual) performance bounds and thus no direct way of
assessing the quality of the solutions found.

We then discuss some of the ideas underlying the heuristics that have become
an important component within MIP solvers in the last 15 years. Finally we sug-
gest one or two ways in which the user can go a step further and make use of an
MIP solver to develop his/her own heuristics that take into account his/her spe-
cial knowledge of the problem. Often, as these approaches use an MIP solver, they
provide not just a primal feasible solution but also a dual bound that provides at
least some a posteriori performance guarantee.

13.2 Greedy and Local Search Revisited

Here we formalize the greedy and local search algorithms presented by example in
Section 2.7. First, we suppose that the problem can be written as a combinatorial
problem in the form:

min
S⊆N

{c(S) ∶ "(S) ≥ k}.

For example, the 0–1 knapsack problem

min
{ n∑

j=1
cjxj ∶

n∑
j=1

ajxj ≥ b, x ∈ {0, 1}n

}

with cj, aj ≥ 0 for j = 1,… ,n is of this form with c(S) = ∑
j∈S cj, "(S) =

∑
j∈S aj,

and k = b. The uncapacitated facility location problem also "ts this model if we
take c(S) = ∑

i∈M min
j∈S

cij +
∑

j∈S fj for S ≠ ∅, "(S) =∣ S ∣, and k = 1.
Below we assume that the empty set is infeasible, "(∅) = c(∅) = 0 and function

" is nondecreasing. We also assume that "(N) ≥ k as otherwise the problem is
infeasible.

A Greedy Heuristic

1. Set S0 = ∅ (start with the empty set). Set t = 1.
2. Set jt = arg min c(St−1∪{jt})−c(St−1)

"(St−1∪{jt})−"(St−1) (choose the element whose additional cost per
unit of resource is minimum).

3. If the previous solution St−1 is feasible, i.e. "(St−1) ≥ k, and c (St−1 ∪ {jt}) ≥
c (St−1), stop with SG = St−1.

4. Otherwise set St = St−1 ∪ {jt}.
5. If t = n, stop with SG = N.
6. Otherwise set t ← t + 1, and return to 2.

20

minimize
M

∑
m=1

ym

M

∑
m=1

xs,m = 1 ∀s

x ∈ {0,1}S×M, y ∈ {0,1}M

S

∑
s=1

mem(s) ⋅ xs,m ≤ cap-mem(m) ∀m

S

∑
s=1

cpu(s) ⋅ xs,m ≤ cap-cpu(m) ∀mym ≥ xs,m ∀s, m

Each service on one machine only

Machine is “ON” if a job is assigned to it

Memory capacity

Processor capacity

Services
Memory

CPU

…

Machines …
?

S

M

Constraints:

ym = 1 if machine is usedm
xs,m = 1 if service runs ons m

Can you find a
feasible

solution easily?

21

Task A B C
Requirement

D

21

Task A B C
Requirement

D

21

Task A B C
Requirement

D

21

Task A B C
Requirement

D

21

Task A B C
Requirement

D

Stuck!!

Feasible
Region of

LP
Relaxation

Round to
nearest integer

(0, 0) (1, 0)

(1, 1)
(0, 1)

Feasibility Pump

22

0 Start with LP-feasible (fractional) solution
1 Round to nearest integer, return if LP-feasible
2 Project integer point to nearest LP-feasible point
3 Go back to step 1

Figure in part from Berthold (2014)

Fischetti, Matteo, Fred Glover, and Andrea Lodi.
"The feasibility pump." Mathematical
Programming 104.1 (2005): 91-104.

23

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

23

OPT
Search tree nodes

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Objective value

23

OPT
Search tree nodes

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Primal bound: value
of best solution so far

Objective value

23

OPT
Search tree nodes

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Primal bound: value
of best solution so far

Dual bound: min. value of
LP relaxation at frontier

Objective value

23

OPT
Search tree nodes

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Primal bound: value
of best solution so far

Dual bound: min. value of
LP relaxation at frontier

!" = 0 !" = 1

!& = 0!' = 0

!& = 0 !& = 1

!& = 1

2.2 1.0

7.3

Objective value

23

OPT
Search tree nodes

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Gap

Primal bound: value
of best solution so far

Dual bound: min. value of
LP relaxation at frontier

!" = 0 !" = 1

!& = 0!' = 0

!& = 0 !& = 1

!& = 1

2.2 1.0

7.3

Objective value

23

OPT
Search tree nodes

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Gap

Primal bound: value
of best solution so far

Dual bound: min. value of
LP relaxation at frontier Value of LP

relaxation at
root node

!" = 0 !" = 1

!& = 0!' = 0

!& = 0 !& = 1

!& = 1

2.2 1.0

7.3

Objective value

Branch and Bound
Divide and Conquer + Implicit Enumeration

24

!

! !

!

114 7 Branch and Bound

S000 S001 S010 S011 S100 S101 S110 S111

S00 S01 S10 S11

S0 S1

S
x1 = 0 x1 = 1

x2 = 0 x2 = 1

x3 = 0 x3 = 1

Figure 7.1 Binary enumeration tree.

(1, 3)

(2, 3)(2, 4)(2, 4)

1234 1243 1342 1324 1432 1423

(1, 2)

(2, 3) (2, 1) (2, 1)

(1, 4)

Figure 7.2 TSP enumeration tree.

that the cities are visited in the order i1, i2, i3, i4, i1 respectively. Note that this is an
example of multiway as opposed to binary branching, in which a set can be divided
into more than two parts.

7.2 Implicit Enumeration

We saw in Chapter 1 that complete enumeration is totally impossible for most
problems as soon as the number of variables in an integer program, or nodes in a
graph exceeds 20 or 30. So we need to do more than just divide inde!nitely. How
can we use some bounds on the values of {Zk} intelligently? First, how can we put
together bound information? Note that as we are maximizing, we take Zk

= −∞
when Sk = ∅ and Zk = −∞ when no feasible solution in Sk has been found.

Proposition 7.2 Let S = S1 ∪ · · · ∪ SK be a decomposition of S into smaller sets,
and let Zk = max{cx ∶ x ∈ Sk} for k = 1,… ,K, Zk be an upper bound on Zk and Zk

be a lower bound on Zk. Then Z = maxk Zk is an upper bound on Z and Z = maxk Zk

is a lower bound on Z.

Branch and Bound
Pruning by Optimality

25

!

! !

!

7.2 Implicit Enumeration 115

Figure 7.3 Pruned by
optimality.

S1 S2

S
27

13

20

20

25

15
S1

20

20
S2

S
25

20

25

15

Max

Figure 7.4 Pruned by
bound.

S1 S2

S
27

13

20

18

26

21
S1

20

18
S2

S
26

21

26

21

Max

Now, we examine three hypothetical examples to see how bound information,
or partial information about a subproblem can be put to use. What can be deduced
about lower and upper bounds on the optimal value Z and which sets need further
examination in order to !nd the optimal value?

Example 7.1 In Figure 7.3, we show a decomposition of S into two sets S1 and
S2 as well as upper and lower bounds on the corresponding problems.

We note !rst that Z = maxk Zk
= max{20, 25} = 25 and Z = maxk Zk =

max{20, 15} = 20. This is clearly an improvement on the initial lower and upper
bounds of 13 and 27, respectively.

Second, we observe that as the lower and upper bounds on Z1 are equal, Z1 = 20,
and there is no further reason to examine the set S1. Therefore, the branch S1 of
the enumeration tree can be pruned by optimality. ◽

Example 7.2 In Figure 7.4, we again decompose S into two sets S1 and S2 and
show upper and lower bounds on the corresponding problems.

We note !rst that Z = maxk Zk
= max{20, 26} = 26 and Z = maxk Zk =

max{18, 21} = 21.
Second, we observe that as the optimal value has value at least 21, and the upper

bound Z1
= 20, no optimal solution can lie in the set S1. Therefore, the branch S1

of the enumeration tree can be pruned by bound. ◽

Example 7.3 In Figure 7.5, we again decompose S into two sets S1 and S2 with
di"erent upper and lower bounds.

We note !rst that Z = maxk Zk
= max{24, 37} = 37 and Z = maxk Zk =

max{13,−∞} = 13. Here no other conclusion can be drawn and we need to
explore both sets S1 and S2 further. ◽

Branch and Bound
Pruning by Bound

26

!

! !

!

7.2 Implicit Enumeration 115

Figure 7.3 Pruned by
optimality.

S1 S2

S
27

13

20

20

25

15
S1

20

20
S2

S
25

20

25

15

Max

Figure 7.4 Pruned by
bound.

S1 S2

S
27

13

20

18

26

21
S1

20

18
S2

S
26

21

26

21

Max

Now, we examine three hypothetical examples to see how bound information,
or partial information about a subproblem can be put to use. What can be deduced
about lower and upper bounds on the optimal value Z and which sets need further
examination in order to !nd the optimal value?

Example 7.1 In Figure 7.3, we show a decomposition of S into two sets S1 and
S2 as well as upper and lower bounds on the corresponding problems.

We note !rst that Z = maxk Zk
= max{20, 25} = 25 and Z = maxk Zk =

max{20, 15} = 20. This is clearly an improvement on the initial lower and upper
bounds of 13 and 27, respectively.

Second, we observe that as the lower and upper bounds on Z1 are equal, Z1 = 20,
and there is no further reason to examine the set S1. Therefore, the branch S1 of
the enumeration tree can be pruned by optimality. ◽

Example 7.2 In Figure 7.4, we again decompose S into two sets S1 and S2 and
show upper and lower bounds on the corresponding problems.

We note !rst that Z = maxk Zk
= max{20, 26} = 26 and Z = maxk Zk =

max{18, 21} = 21.
Second, we observe that as the optimal value has value at least 21, and the upper

bound Z1
= 20, no optimal solution can lie in the set S1. Therefore, the branch S1

of the enumeration tree can be pruned by bound. ◽

Example 7.3 In Figure 7.5, we again decompose S into two sets S1 and S2 with
di"erent upper and lower bounds.

We note !rst that Z = maxk Zk
= max{24, 37} = 37 and Z = maxk Zk =

max{13,−∞} = 13. Here no other conclusion can be drawn and we need to
explore both sets S1 and S2 further. ◽

Branch and Bound
Pruning is not possible!

27

!

! !

!

116 7 Branch and Bound

S1 S2

S
40

24

13

37
S1 S2

S
37

13

24

13

37

Max Figure 7.5 No pruning
possible.

Based on these examples, we can list at least three reasons that allow us to prune
the tree and thus enumerate a large number of solutions implicitly.

(i) Pruning by optimality: Zt = {max cx ∶ x ∈ St} has been solved.
(ii) Pruning by bound: Zt ≤ Z.

(iii) Pruning by infeasiblity: St = !.

If we now ask how the bounds are to be obtained, the reply is no di!erent from
in Chapter 2. The primal (lower) bounds are provided by feasible solutions and the
dual (upper) bounds by relaxation or duality.

Building an implicit enumeration algorithm based on the above ideas is now in
principle a fairly straightforward task. There are, however, many questions that
must be addressed before such an algorithm is well de"ned. Some of the most
important questions are

What relaxation or dual problem should be used to provide upper bounds? How
should one choose between a fairly weak bound that can be calculated very rapidly
and a stronger bound whose calculation takes a considerable time?

How should the feasible region be separated into smaller regions S = S1 ∪ · · · ∪
SK? Should we separate into two or more parts? Should we use a "xed a priori rule
for dividing up the set, or should the divisions evolve as a function of the bounds
and solutions obtained en route?

In what order should the subproblems be examined? Typically, there is a list of
active problems that have not yet been pruned. Should the next one be chosen on
the basis of last-in "rst-out, of best/largest upper bound "rst, or of some totally
di!erent criterion?

These and other questions will be discussed further once we have seen an
example.

7.3 Branch and Bound: an Example

The most common way to solve integer programs is to use implicit enumeration, or
branch and bound, in which linear programming relaxations provide the bounds.
We "rst demonstrate the approach by an example.

!

! !

!

7.4 LP-Based Branch and Bound 121

Initialization
Initial problem S with

reformulation P on list
Z = −∞

Incumbent x∗ void

Call primal heuristic
If solution xH of value ZH ,

Z = ZH , x∗ = xH

Return two subproblems Si
1 and Si

2
with formulations P i

1 and P i
2

and upper bounds Z
i

Y

If xi(LP) integer, update primal bound
Z = Z

i and incumbent x∗ = xi(LP)
Prune by optimality

Y

Y

Y

Y

N

N

N

N

N

If Z
i ≤ Z, prune by bound

If P i is empty, prune by infeasibility

Solve LP relaxation over P i

Dual bound Z
i = LP value

xi(LP) = LP solution

Remove problem from listSi

with formulation P i

and dual bound Z
i

If Z
i ≤ Z, prune by bound

Y

List
Empty? STOP

Incumbent optimal

Figure 7.10 Branch-and-bound flow chart.

Pruning rule

Pruning rule

Pruning rule

Primal heuristic

Node selection

Solving LP Relaxation

Pruning rule

Branching variable selection

Termination criterion

