Did | forget to hit

record? Please
remind me!

Integer Programming

MIE1666: Machine Learning for Mathematical Optimization

Readings and figures from Chapters 1, 2, 7, 13 of Integer Programming by Wolsey

& UNIVERSITY OF

Elias B. Khalil — 20/09/21

q ccueo @ @

Services

Memory _‘

M 0 Qo
Machines ¢ O

y,, = L if machine m is used S

X, , = lif service § runs on m Services

M o 1o
Machines O n)

y,, = L if machine m is used S

X, , = lif service § runs on m Services e

x € {0,1}"M y e {0,111

e ™ Y-~
P - | vedis A
LSRN - — 5
PR N
23 N,

M 0 100
Machines O 0o

y,, = L if machine m is used S

X;,, = lif service srunson m garvices .

x € {0,1}>M y e {0,1}¥

* N = P -
CENES d e R o
SRR 7 SN

A '

minimize 2 Ym Machines E ¢ E o0

m=1

y,, = L if machine m is used S

X;,, = lif service srunson m garvices .

x € {0,1}>M y e {0,1}¥

> ¢ - R .
. ’ '

minimize 2 Ym Machines E ¢ E o0

m=1

Constraints:

y,, = L if machine m is used S
X, , = lif service § runs on m Services

x € {0,1}"M y e {0,111

- M
minimize 2 Y, _
— Machines
Constraints:
Each service on one mgcﬁhzgoﬁy
M

y,, = L if machine m is used S
X, , = lif service § runs on m Services

x € {0,1}"M y e {0,111

M

M
minimize 2 Vo

— Machines
Constraints:
Fach service on one machine only
M
Z Xg =1 Vs
m=1

Ym 2 X m Vs, m

Machine is “ON” if a Job is assignhed to it

y,, = L if machine m is used S

x, . = lif service § runs on m Services

x € {0,1}"M y e {0,111

M
m|n|mlzemZ=:1ym MaChlnes E ¢¢ 000 ﬁﬁ
Constraints:

R e —————— e —————— E— e e ———— e ——— S

Each service on one machine only lMgmlg;; ;E;&tyl
M S
Z X, =1 Vs 2 mem(s) - x; , < cap-mem(m) Vm
m=1 s=1

VY 2 Xgpy VS, M

Machine is “ON” if a Job is assignhed to it

y,, = 1 if machine m is used S CPU @ ‘ ‘
x, . = lif service § runs on m Services

x € {0,1}"M y e {0,111

M
e Z,lym Machmes E i:“.ti‘:t et ﬁﬁ
Constraints:

R e —————— e —————— E— e e ———— e ——— S

Each service on one machine only lMgmlg;; ;E;&tyl
M
sz,m =1 Vs Z mem(s) - x; , < cap-mem(m) Vm
m=1 s=1
S
Vi = Xy, VS, m Z cpu(s) - x,,, < cap-cpu(m) Vm

Machine is “ON” if a Job is assignhed to it s=1 Processor capacity

Linear Program

max c'x

Ax < b
r >0

Data (known) A & Ran7 b RmX17 = RnXl

Variables (unknown) T & RnX1

(Pure) Integer (Linear) Program

max c'x
Ax < b

r > 0 and 1integer

AeR™" pe R™* ¢ e R?¥

T E Rnxl

Mixed Integer (Linear) Program

max c'x + h'y
Arx+ Gy < b
r > 0 and integer, y > 0

AeR™™ GeR™P beR™ " ce R" he RP

r e R ¢ e RPX!

0-1 (Binary) Program

max c'x
Ax < b
r e {0,1}"
A € Ranyb c RmX1,C c RnX1

T E Rnxl

Combinatorial Optimization Problem

SCN

min{zjescj : Se]—“}

N =1{1,...,n} is a finite set,
c; € R 1s a weight for each j € NV,
JF 1s a set of feasible subsets of V.

376 950

1937 193

max 1.00x;, +0.64x,

50x; +31x, < 250 3
3X, —2x, 2 —4
X, X, > 0 and integer. 2

6 From Integer Programming by Wolsey

Formulating optimization problems

1. Decision variables: what do you control?
2. Constraints: what conditions do these variables need to satisfy?

3. Objective function: what are you maximizing in the variables?
4. Check: do 1-3 accurately represent your problem? If not, repeat.

Assignment Problem

There are n people available to carry out n jobs. Each person is assigned to carry out
exactly one job. Some individuals are better suited to particular jobs than others,
so there is an estimated cost ¢;; if person i is assigned to job j. The problem is to
find a minimum cost assighment.

Definition of the variables.

x; = 1 it person i does job j, and x;; = 0 otherwise.
Definition of the constraints.

Each person i does one job:

n Definition of the objective function.
Z x;=1 fori=1,...,n. The cost of the assignment is minimized:
]:1 n n
Each job j is done by one person: i Z Z CijXij-
i=1 j=1

n
inj =1 forj=1,...,n.
i=1

The variables are 0-1:
X;; € {0,1} fori=1,...,n,j=1,...,n.

10

0-1 Knapsack Problem

There is a budget b available for investment in projects during the coming year
and n projects are under consideration, where q; is the outlay for projectjand c; is
its expected return. The goal is to choose a set of projects so that the budget is not

exceeded and the expected return is maximized.

Definition of the variables. Definition of the objective function.

x; = 1 it projectj is selected, and x; = 0 otherwise. The expected return is maximized:

Definition of the constraints.
The budget cannot be exceeded: max 2

n
D, ax <b.
=

The variables are 0-1:

e

X; € {0,1} forj=1,...,n.

CC BY-SA 2.5, https://
commons.wikimedia.org/w/
11 index.php?curid=985491

https://commons.wikimedia.org/w/index.php?curid=985491
https://commons.wikimedia.org/w/index.php?curid=985491
https://commons.wikimedia.org/w/index.php?curid=985491

Set Covering Problem

Given a certain number of regions, the problem is to decide where to install a set of
emergency service centers. For each possible center, the cost of installing a service
center and which regions it can service are known. For instance, if the centers are
fire stations, a station can service those regions for which a fire engine is guaran-
teed to arrive on the scene of a fire within eight minutes. The goal is to choose a
minimum cost set of service centers so that each region is covered.

TI}flCl]I\l, 2 jer G - UjerS; = M

M ={1,..., M} is the set of regions,
N ={1,...,n} is the set of potential centers,
c; € R™ is the per-region installation cost.

12

Set Covering Problem

Given a certain number of regions, the problem is to decide where to install a set of
emergency service centers. For each possible center, the cost of installing a service
center and which regions it can service are known. For instance, if the centers are
fire stations, a station can service those regions for which a fire engine is guaran-
teed to arrive on the scene of a fire within eight minutes. The goal is to choose a
minimum cost set of service centers so that each region is covered.

Definition of the variables.
x; = 1 if center j is selected, and x; = 0 otherwise.
Definition of the constraints.

. . Definition of the objective function.
At least one center must service region i: Ji / J J

The total cost is minimized:

n
. n
Zaijxj21 fori=1,...,m. ,
= min Z CiX;.
j=1

The variables are 0-1:

X; € {0,1} forj=1,...,n.

13

Equivalent formulations of the same set
X = {(L1),(2,1),3,1),(1,2),(2,2),(3,2),(2,3)]

0-1 (Binary) Program

2 : . INlaXx CT$ Zl Dual bound
Z2 Relaxation
Ax S b 7o solution
" B values
r €4{0,1} 2

Z Optimal value

Z3
AcR™" phc R cc R |, -
ZEGR”Xl Z,

Primal bound

15

Dual bound from Relaxations
A)

376 950

1937 193

max 1.00x; +0.64x, ’
50X, +31x, < 250 3

3%, —2X, 2 —4
X, X, > 0 and integer. 2

6 From Integer Programming by Wolsey

Set Covering Problem

Given a certain number of regions, the problem is to decide where to install a set of
emergency service centers. For each possible center, the cost of installing a service
center and which regions it can service are known. For instance, if the centers are
fire stations, a station can service those regions for which a fire engine is guaran-
teed to arrive on the scene of a fire within eight minutes. The goal is to choose a
minimum cost set of service centers so that each region is covered.

min o Ci s User S = M
TCN Z]ET J WAS J

M ={1,..., M} is the set of regions,
N ={1,...,n} is the set of potential centers,
c; € R™ is the per-region installation cost.

17

0-1 Knapsack Problem

There is a budget b available for investment in projects during the coming year
and n projects are under consideration, where q; is the outlay for projectjand c; is
its expected return. The goal is to choose a set of projects so that the budget is not

exceeded and the expected return is maximized.

Definition of the variables. Definition of the objective function.

x; = 1 it projectj is selected, and x; = 0 otherwise. The expected return is maximized:

Definition of the constraints.
The budget cannot be exceeded:

n
D, aX <b.
i

The variables are 0-1:

n
max Z CiX;.
J=1

X; € {0,1} forj=1,...,n.

18

0-1 Knapsack Problem

Greedy algorithm

>
>

min C.X; ax; 2 b, x € {0, 11"

1. Set S° = @ (start with the empty set). Set t = 1.

2. Set j, = argmin ii:izgi;:z((i__?) (choose the element whose additional cost per
unit of resource is minimum).

3. If the previous solution S’ is feasible, i.e. v(S'™') > k, and ¢ (S“ ' U {j,}) >
¢ (S71), stop with S¢ = 1.

4. Otherwise set S* = S"1 U {j,}.

. If t = n, stop with S® = N.

6. Otherwise sett <« t + 1, and return to 2.

)

19

y,, = lif machine m is used S CPU @ ‘ ‘
x, . = lif service s runs on m Services

x € {0,1}"M y e {0,111

M
m|n|mlzen;ym MaChIneS E ﬁﬁ Y ﬁﬁ
Constraints:

e e

Each service on one machine only lMgij)_r; &Eé&?‘yl
M
me =1 Vs Z mem(s) - x, ,, < cap-mem(m) Vm
m=1
Vi = Xy, VS, m Z cpu(s) - x,,, < cap-cpu(m) Vm

Machine is “ON” if a Job is assignhed to it s=1 Processor capacity -

20

Requirement
Task A B C D

10
10

21

Requirement
Task A B C D

10
10

21

Requirement
Task A B C D

10
10

21

Requirement
Task A B C D

10
10

21

Requirement
Task A B C D

. 10
10

21

0 Start with LP-feasible (fractional) solution Feas|b|||ty Pump

1 Round to nearest integer, return if LP-feasible
2 Project integer point to nearest LP-feasible point

3 Go back to step 1

Round to
nearest integer

clr £

Fischetti, Matteo, Fred Glover, and Andrea Lod..
"The feasibility pump." Mathematical
Programming 104.1 (2005): 91-104.

22 Figure in part from Berthold (2014) O

minc’x s.t. Ax < b, x € {0,1}"

X

23

minc’x s.t. Ax < b, x € {0,1}"

A

Objective value

OPT >

Search tree nodes

23

minc’x s.t. Ax < b, x € {0,1}"

Objective value | :
{ Primal bound: value

| of best solution so far

OPT

Search tree nodes

23

minc’x s.t. Ax < b, x € {0,1}"

Objective value | :
{ Primal bound: value

| of best solution so far

d
§
®
- . § X _
[- S - o - g « NG 52 g = Y B\ SR
e rle- & i PO SO N T R PIT S Teorer-- R T B RN FORD
Q..
B
B\«
&
)
v At s
~ . \ - PR I" .
- Y - sas Il .
o - . /,' - -
N \ w . <&
) g ez
ALy
-
S 2. -
PEFPOL-
. el
Y p?
/ol
-
= .
s
-

Search tree nodes

/" Dual bound: min. value of
| LP relaxation at frontier

23

Objective value

OPT

4
g
i

minc’x s.t. Ax < b,x € {0,1}"

X

{ Primal bound: value
i of best solution so far

@

Search tree nodes

/" Dual bound: min. value of
| P relaxation at frontier

23

@

Objective value

OPT

4
g
i

minc’x s.t. Ax < b,x € {0,1}"

X

{ Primal bound: value
i of best solution so far

@

Search tree nodes

/" Dual bound: min. value of
| P relaxation at frontier

23

@

minc’x s.t. Ax < b,x € {0,1}"

Objective value | i :
{ Primal bound: value

| of best solution so far

OPT

Search tree nodes

" Dual bound: min. value of

Value of LP LP relaxation at frontier
relaxation at == ===
root node

23

Branch and Bound
Divide and Conquer + Implicit Enumeration

_o/

o)

Branch and Bound
Pruning by Optimality

Figure 7.3 Pruned by Max

27

optimality. @ N
20 25 20
20 15 20

25

Branch and Bound
Pruning by Bound

Figure 7.4 Pruned by Max

bound. 27 26
13 21
—
18 21 18 21

26

Branch and Bound

Pruning is not possible!

Max

40 37
(5 OF
—>
24 37 24 37
QRO ORNCO

27

Initialization
Initial problem S with
reformulation P on list
4 =—00
Incumbent =™ void

l

Call primal heuristic

If solution =¥ of value Z% ,
Z — ZH, :E* — CUH

List
Empty?

Primal heuristic

IN

STOP

Incumbent optimal

Termination criterion

Remove problem S* from list

with formulation P_i
and dual bound Z°

y !

= If Z' < Z, prune by bound

IN

Solve LP relaxatiqn over P*
Dua_l bound Z' = LP value
x" (L P) =LP solution

!

< If P*is empty, prune by infeasibility

y i

< If Z° < Z, prune by bound

IN

v If 2" (L P) integer, update primal bound
< Z = Z' and incumbent z* = 2" (LP)
Prune by optimality

IN

v Return two subproblems .S i and S;
< with formulations P; and P,

and upper bounds Z°

Figure 710 Branch-and-bound flow chart.

Node selection
Pruning rule
Solving LP Relaxation

Pruning rule

Pruning rule

Pruning rule

Branching variable selection

